RECOGNISING ACHIEVEMENT

ADVANCED GCE

Additional materials (enclosed): None
Additional materials (required):
Answer Booklet (8 pages)
Graph paper
MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.

Section A (36 marks)

1 Solve the inequality $|2 x-1| \leqslant 3$.

2 Find $\int x \mathrm{e}^{3 x} \mathrm{~d} x$.
(i) State the algebraic condition for the function $\mathrm{f}(x)$ to be an even function.

What geometrical property does the graph of an even function have?
(ii) State whether the following functions are odd, even or neither.
(A) $\mathrm{f}(x)=x^{2}-3$
(B) $\mathrm{g}(x)=\sin x+\cos x$
(C) $\mathrm{h}(x)=\frac{1}{x+x^{3}}$

4 Show that $\int_{1}^{4} \frac{x}{x^{2}+2} \mathrm{~d} x=\frac{1}{2} \ln 6$.
5 Show that the curve $y=x^{2} \ln x$ has a stationary point when $x=\frac{1}{\sqrt{\mathrm{e}}}$.

6 In a chemical reaction, the mass m grams of a chemical after t minutes is modelled by the equation

$$
m=20+30 \mathrm{e}^{-0.1 t}
$$

(i) Find the initial mass of the chemical.

What is the mass of chemical in the long term?
(ii) Find the time when the mass is 30 grams.
(iii) Sketch the graph of m against t.

7 Given that $x^{2}+x y+y^{2}=12$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.

Section B (36 marks)

$8 \quad$ Fig. 8 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\frac{1}{1+\cos x}$, for $0 \leqslant x \leqslant \frac{1}{2} \pi$.
P is the point on the curve with x-coordinate $\frac{1}{3} \pi$.

Fig. 8
(i) Find the y-coordinate of P .
(ii) Find $\mathrm{f}^{\prime}(x)$. Hence find the gradient of the curve at the point P.
(iii) Show that the derivative of $\frac{\sin x}{1+\cos x}$ is $\frac{1}{1+\cos x}$. Hence find the exact area of the region enclosed by the curve $y=\mathrm{f}(x)$, the x-axis, the y-axis and the line $x=\frac{1}{3} \pi$.
(iv) Show that $\mathrm{f}^{-1}(x)=\arccos \left(\frac{1}{x}-1\right)$. State the domain of this inverse function, and add a sketch of $y=\mathrm{f}^{-1}(x)$ to a copy of Fig. 8.

9 The function $\mathrm{f}(x)$ is defined by $\mathrm{f}(x)=\sqrt{4-x^{2}}$ for $-2 \leqslant x \leqslant 2$.
(i) Show that the curve $y=\sqrt{4-x^{2}}$ is a semicircle of radius 2 , and explain why it is not the whole of this circle.

Fig. 9 shows a point $\mathrm{P}(a, b)$ on the semicircle. The tangent at P is shown.

Fig. 9
(ii) (A) Use the gradient of OP to find the gradient of the tangent at P in terms of a and b.
(B) Differentiate $\sqrt{4-x^{2}}$ and deduce the value of $\mathrm{f}^{\prime}(a)$.
(C) Show that your answers to parts (A) and (B) are equivalent.

The function $\mathrm{g}(x)$ is defined by $\mathrm{g}(x)=3 \mathrm{f}(x-2)$, for $0 \leqslant x \leqslant 4$.
(iii) Describe a sequence of two transformations that would map the curve $y=\mathrm{f}(x)$ onto the curve $y=g(x)$.

Hence sketch the curve $y=g(x)$.
(iv) Show that if $y=g(x)$ then $9 x^{2}+y^{2}=36 x$.

